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Mean velocity and mean turbulent field measurements are performed for the 
case of a three-dimensional turbulent boundary layer on an axially rotated 
cylinder. The cylinder model consists of two parts: a stationary section followed 
by a spinning afterbody. Techniques of hot-wire anemometry are employed, 
which yield complete mean velocity and turbulence measurements in skewed 
flows. The general behaviour of the three-dimensional boundary layer is first 
discussed: two asymptotic layers analogous to the two-dimensional wall and 
defect layers are observed; they are shown to evolve from the equations of mean 
motion. The hypothesis of scalar eddy viscosity is investigatedin the light of these 
results. Using conventional length scale assumptions together with the Reynolds 
stress tensor equations, a prediction of curvature effects in the law of the wall 
region is developed; a result in the present case is a smaller slope of the semi- 
logarithmic portion of the law of the wall, No assumptions over and above those 
necessary for plane, two-dimensional flow are required for this analysis. The 
geometry of the model is such that a rapid change in mean rate of strain occurs 
along the streamlines. From the history of the components of the uiui tensor, 
it  is possible to draw some fundamental conclusions concerning the dynamics of 
the energy dissipation, diffusion and redistribution processes. 

- 

1. Introduction 
Turbulent boundary-layer theories have to date been derived almost ex- 

clusively from two-dimensional flow data. Theories founded on the simple 
mixing length or eddy viscosity hypothesis have achieved remarkable success 
in this field. Yet the very concept of eddy viscosity has long been questioned, 
especially the dependence of the mixing length or eddy transport on local mean 
flow conditions only. Furthermore, the basic eddy viscosity concept does not 
seem to evolve from the equations of motion. Consequently, researchers have 
recently been considering a variety of closure schemes for the mean turbulent 
field equations, which are physically more satisfying, but still require modelling 
of very important turbulent transport processes. 

Three-dimensional flows are interesting because they constitute a serious test 
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for theories that might work very well in most cases of two-dimensional flows, 
but whose shortcomings, if they exist, may be more visible in three-dimensional 
problems. The data offered here should be useful in challenging various turbulent 
boundary-layer models. Another feature of the present study is the experimental 
observation of the turbulence response to a rapidly changing mean rate of strain, 
which is intimately connected with the physics of the different turbulent trans- 
port processes, and thus should serve as a useful guideline for the constitutive 
hypotheses of any closure theory. 

The geometry chosen for the present experiment is an axisymmetric turbulent 
boundary layer skewed by an axially rotated cylinder. Complete mean velocity 
and turbulence measurements were performed. A similar experiment was 
conducted by Furuya, Nakamura & Kawachi (1966), but they did not report 
turbulence measurements. Other types of three-dimensional boundary layers 
were studied by, for example, Johnston (1960), Hornung & Joubert (1963), 
Perry & Joubert (1965), Cham & Head (1969, 1970), but all these studies lack 
turbulence data. The only data of this sort (known t o  the authors) are due to 
Bradshaw &Terre11(1969) and Johnston (1970). In the former, the decay of weak 
crossflows under the action of shear stress alone was studied. In  the latter, 
three-dimensionality was induced by a swept, forward-facing, step placed on a 
flat plate. The inconvenience of this type of geometry, as pointed out by the 
author, is that the flow is strongly influenced by pressure gradients, which 
certainly may conceal important aspects of the interaction between turbulent 
stresses and meanvelocity field. In  contrast, the present experiment involves fairly 
strong three-dimensional flows caused by the action of shearing stresses alone. 

The cylinder model is made of two sections. The leading stationary section is 
immediately followed by a rotating section, so that fluid particles, as they enter 
the zone of influence of the rotating wall, are subjected to a relatively sudden 
change in mean rate of strain. Subsequently, an equilibrium axisymmetric turbu- 
lent boundary layer develops. From the history of each component of the uiuj 
tensor, some information can be drawn concerning the dynamics of turbulence. 
An analogy is the problem of the ‘step’ response of a given electronic circuit. 
In a related problem, Townsend (1954) devised an experiment t o  verify some of 
the predictions contained in a linearized theory first derived by Ribner & Tucker 
(1952) and later reconsidered by Batchelor & Proudman (1954). The experiment 
consisted of passing homogeneous turbulence through a constant-area distorting 
duct. Townsend found that the linear theory had some qualitative values only 
in the very early stages of the distortion, suggesting that nonlinear interaction 
was almost as fast as the distortion itself. Also, using a linearized set of equations, 
Moffatt ( 1965) showed that turbulence response to rapidly applied uniform shear 
is of viscoelastic form. The present method follows this line of thought. Although 
the situation is more complex owing to the geometry of the flow, fundamental 
features of the dynamics of turbulence can nevertheless be observed. 

- 
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Side view 

FIGURE 1. Schematic diagram of wind tunnel and model. 

2. Experiment and apparatus 
The experiment consisted of measuring the characteristics of the turbulent 

boundary layer that develops on a circular cylinder aligned with the main- 
stream. The cylinder was made of polished aluminum tubing 5in. O.D. and 0.5in. 
thick. It was mounted on a loft  long ground-steel shaft, rigidly supported a t  
both ends. To minimize disturbances, the forward support was moved upstream, 
inside the settling chamber. 

The model itself was made of two principal sections, each 2.5ft long. The 
leading section was stationary, whereas the downstream section was mounted 
on ball bearings. The gap between the two sections was estimated at  0*002-0.003 
in. The rotating cylinder was belt-driven from outside by a 4 h.p. constant speed 
a.c. motor. The rotation speed was measured and constantly monitored by means 
of a strobe light. It was held constant for all cases reported here and its value was 
2800 & 25 rev/mh. 

The experiment was carried out in an open return wind tunnel. Figure 1 is 
a schematic drawing showing the model in place. The air entered through a bell- 
mouth and passed through seven 24-mesh gauzes and a short settling length 
before a 20: 1 ratio, axisymmetric contraction. The working section was circular, 
16in. in diameter and 6ft long. The air then passed through a diffuser before 
being exhausted into the atmosphere by an axial flow fan driven by a 5-3 h.p. 
d.c. motor. The air speed could be varied continuously between approximately 
10 and 65 f t  s-l. 

Because of the large contraction ratio of the entrance nozzle, disturbances 
created by the forward support should be sufficiently reduced. The mainstream 
turbulence level, with the model in place, was measured to be less than 0-5 yo. 
This is not impressively small, but still small enough compared with boundary- 
layer generated turbulence. 

24-2 
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FIGURE 2. Sample calibration curve of linearized output: calibration run 8; tungsten wire; 
cold resistance 5.93 0, operating resistance 8.90 R. 0, calibration at beginning of partic- 
ular run; n, calibration at end of same run. 

0 Mean velocity Mean velocity and turbulence 
measurements measurements 

59.5 ft  s-1 Mean velocity and Mean velocity and turbulence 
turbulence measure- measurements 
ments 

TABLE 1. Summary of measured quantities and the conditions 
under which they are obtained. 

Finally, the rotation speed was well above the critical frequency of the model 
of 200rev/min estimated from the observed peak vibrations. At the working 
speed, vibrations were practically non-existent. Within the accuracy of our 
traversing mechanism ( & 0.001 in.), the contact point was found to be the same 
for both dynamic and static conditions. 

Measurements were performed in four different situations, summarized in 
table 1.t It is recalled that the rotation rate was always kept the same in all cases, 
but that mainstream veIocity was varied instead. Static pressures were recorded 
on the tunnel walls and not on the model itself, for evident reasons. 

f Tabulations of all of the data may be obtained by writing to the second author. 
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FIGURE 3. Co-ordinate systems. Q is local mean velocity vector. 

3. Mean flow measurements 
A hot-wire technique was developed for measurements of skewed velocity 

profiles. I n  the other cases when no rotation was present, a standard flattened 
head Pitot probe was used. The hot-wire probes were commercially made, and two 
types of sensors were used. The factory-mounted wires were first used; they were 
tungsten 0-00015in. in diameter and 0.05in. long with both ends copper plated. 
In other instances the broken sensors were replaced by soldering pre-etched 
tungsten wires, 0.0002in. in diameter. A linearizer was used in conjunction with 
the constant-temperature anemometer. Calibration was performed using a 
small portable open return wind tunnel. A sample calibration curve is shown in 
figure 2. 

For mean flow measurements, a straight hot-wire probe (sensor mounted 
perpendicular to the stem axis) was introduced and traversed along a radius of 
the cylinder as shown in figure 3. The probe was attached to a driving mechanism 
which rotated its stem very slowly ( N 1 degree s-l) in both directions. The hot- 
wire signal was linearized, filtered and connected to the y input of an x, y plotter. 
The x input of the latter was fed with the voltage output of a potentiometer 
mechanically coupled to the driving device. 

The mean value of a linearized hot-wire signal follows the law 
- 
e, = K&f($) ,  (1) 

where Q is the magnitude of the mean velocity vector, 6 is the angle of attack and 
K is the linearizer calibration constant. The function f(4) represents the direc- 
tional properties of the sensor, and is normalized so that f(0) = 1, Referring to 
figure 4 (a) ,  which illustrates the plane of rotation of the wire, it is easy to show 
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FICunE 4. Co-ordinate systems. (a) For rotated straight-wire probe. Sensor in x,z plane. 
( b )  For slanted-wire probe. ( p )  is projection of sensor in z , z  plane. (m)  is normal to line 
( p )  in x, z plane. 

that in the present case ( 1  ) can be rewritten as 

where 6is the relative angle of rotation and /3 the mean flow angle. 
- The experimental procedure was as follows. At a given height, the signal 
e, was recorded against 6 and the maximum value (<)max was read on a digital 
voltmeter. Rotation was chosen to span approximately the range 

-40' < (6-p) < 40°, 

andrecordingwas always performed in the same direction, to minimize the back- 
lash errors. Figure 5 shows a typical series of those traces. 

To reduce mean flow data, it was not necessary to specify completely the 
function f (q5) .  It is required only that f (q5)  be symmetric with respect to its 
argument and pass through a maximum a t  q5 = 0. Therefore, both the direction 
B and magnitude Q of the local mean velocity vector could be determined 
simultaneously from the calculation of the point of symmetry S,, of each trace, 
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FIGURE 5 .  Sample traces for mean velocity measurements. 
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FI~URE 6. Sample profiles of magnitude and direction of mean velocity. €2 = 4-14 x lo-' is 
the Reynolds number based on the mainstream velocity and the radius of the oylinder. 
L2 = Wo/Uo = 1.8 is the rotation rate. Q is local mean flow velocity vector. Station 8. 0, p; 

9 QiQw 

and from the reading of its maximum value, according to 

CYs -/3 = 0, (<)max = K( u2 -!- W2)k (3), (4) 

Thus, measurements of 8, and (&,,, were sufficient to specify completely the 
skewed velocity profiles. A reference angle for 6 was obtained by setting B = 0 
when the sensor was located well outside the boundary layer and the rotating 
cylinder was turned off. (The mainstream direction is the relevant reference 
angle of our flow field.) As a test of consistency, mean velocity profiles measured 
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with this technique were compared with those obtained with a Pitot probe in the 
case of no rotation. The agreement was better than I % of the local value, and 
fluctuations in the measured flow angle were smaller than 0.5'. Sample profiles 
for p and Q are shown in figure 6. 

4. Turbulence measurements 
For measurements of turbulent velocity moments, we selected a hot-wire 

method which is a modification of a technique proposed by Fujita & Kovasznay 
(1968). A block diagram of the anemometkr system is shown in figure 7. The 
experimental procedure was divided into two sets of measurements. First, a 
straight-wire probe (same definition as in $3) was introduced and rotated as 
described in $3. I n  this case, both the mean and mean-square value of t'he linear- 
ized signal were recorded against the angle 6 of rotation by means of x, y plotters. 
Second, a 45" slanted-wire probe (the sensor makes a 46' angle with the stem 
axis) was similarly introduced and rotated. The same variables were recorded 
in the same manner. The latter probe was positioned in such a way as to keep 
the longest prong always behind (or parallel to) the shortest one during rotation. 
Figures 4 (a)  and ( b )  illustrate the principal features for both cases, respectively. 

In  figures 8 and 9, a sample record for the mean and mean-square value are 
shown (straight-wire probe). Recordings were performed in both directions of 
rotation. This was thought necessary to account for differences in hysteresis 
due to the different time constants of the low pass filter and the RMS meter. 
The true signal was interpreted by drawing an average curve between both traces. 
However, to reduce experimentation time, the two time constants were chosen 
approximately equal, and, assuming comparable hysteresis, recording in only 
one direction was required. Results obtained by the latter method did not differ 
practically from those obtained by the former. 

It is evident in figures 8 and 9 that traces for the mean-square value have 
a higher noise level. This could have been eliminated by choosing a larger 
integration constant for the RMS meter. However, since rotation speed had to 
be kept within practical limits, there would have resulted a more widespread 
hysteresis, which would have caused serious interpretation problems. There- 
fore, the choice of a particular integration constant waa a compromise between 
noise level and hysteresis. I n  all cases reported here, it was set a t  3 s. 

In  the two sets of measurements, the sensor was rotated about the mean flow 
angle 8. However, it must be stressed that accurate preliminary knowledge 
ofpis not necessary; a rough estimate is quite suficient. At each measuring point, 
the true angle /3 can be computed from the point of symmetry of the mean value 
record according to the technique described in $3. It is a built-in feature, so 
no criticaI alignment is required. 

Data reduction was performed as follows. The derivation of the pertinent 
equations for the following analysis can be found in Bissonnette ( 1970). They are 
recalled here, andspecializedfor the use of alinearizerwith calibration constant K.  
The reader is referred to figures 4 (a )  and ( b )  for an illustrated definition of the 
variables. The working equations are summarized below. 
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FIGURE 7. Block diagram of hot-wire anemometer system. 
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FIGURE 8. Sample traces of linearized mean voltage output. 
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FIGURE 9. Sample traces of linearized mean-square voltage output. 

Slanted-wi,re probe 
sin$ = sinysin(6-/3), 

eL = K (  U 2  + W2)+f($), 
- 

The turbulent velocity moments with a superscript * are defined in a frame 
of reference aligned wit,h local mean velocity vector. The moments in the frame 
of reference fixed to the axis of the cylinder are Ohus given by 

2 = Z coszp - 2 Z  sinp cosp  + 2* sinzp, 

212 = +*, 
w2 = iFsin2p+ 2UWLsin~~os~+.UiL+cos2~, 

uv = uv* cos p - vw* sin p, 

- -  

- 

- -  - 

uw = (Z - 2) sin p cos p + Z( cos2 p - sin2 p) . 
The angle of rotation 6 is obtained from the calibrated x co-ordinate of each 

plot, and the flow angle p is computed as described earlier. The angle 9 satisfies 
(5) or (8), depending on which case is considered. Hence, the function j(@) can 
be experimentally evaluated from the mean voltage record, viz. 

However, since (7 )  and (10) involve derivatives off($) the experimental data were 
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fitted to a proposed functional form. The particular expression selected here wt~s 
that suggested by Champagne, Sleicher & Wehrman (1967), i.e. 

f2(q5) = cos2q5+k2sin2q5. (11) 

The constant k was determined for each run, independently of any prior cali- 
bration. Thus, in this respect, the method can be said to be self-calibrating. In  
each case, k was computed as a mean value over all data points, i.e. 

A typical value for k was 0-2. This scheme appears more accurate, inasmuch as 
it makes use of all available data points to compute local derivatives. 

were obtained 
by least-square fitting (7) to the experimental record o f 3  (straight-wire probe). 
Substituting these results in (lo),  the remaining components 7, and vw* 
were computed by a similar technique, using t h e 2  record of the slanted-wire 
probe. In  principle, (10) should be sufficient to determine all six components 
uiuj, but in practice the accuracy of such a scheme was found to be inconsistent. 
The recordings were simply not accurate enough, and the limited range of q5 
imposed by the geometry was too short to permit the determination of six in- 
dependent numbers from a single trace. 

In  view of the three-dimensionality of the flow under investigation, this 
rotating-wire methodwas preferred to the more classical X-probe technique. The 
latter requires a precise knowledge of the local mean flow direction for accurate 
positioning of the probe. Failing to do so would result in significant errors. 
As shown in the preceding paragraphs, this difficulty disappears, because the 
wire is allowed to rotate. Initially, rotation of an X-probe was considered, but it 
soon became evident that a single wire was not only sufficient, but also desirable 
to minimize the prong interference effects. Again, since a single wire was used, the 
matching of two slightly different sensors was not necessary. Furthermore, the 
method is so designed that no prior angular calibration was required: it was 
built-in by the determination of a new k a t  each point. One drawback, however, 
was the longer measuring time involved, which in its turn involved a more critical 
demand for stability of both the flow field and the electronic equipment. 

The reader is reminded that, contrary to ordinary practice and because of the 
need for rotation, the probes were introduced with their prongs perpendicular 
to the mean flow. (In view of the relatively small thickness of the layers con- 
sidered in this experiment, more elaborate probe configurations appeared very 
difficult to realize. Some attempts were made in this direction, but no appreciable 
advantages were realized.) Of course, the sensors were calibrated in the same 
configuration, and i t  is interesting to note that the measured constant k of (1  1) 
was found to approximate very well to the value predicted by Champagne 
et ah. (1967) for the types of sensors used. This indicates that interference 
effects were not too critical. 

- -  
With the function f($) at hand, components u2*, w2* and 

- 



380 L. R. Bissonnette and G. L. Mellor 

1-2 I I I I I 1 I I I 

- 

- 

N C  0 6 -  -5 
13 

- 

0.4 - 

0 2  - 

0 0  0 1  0.2 0 3  01 0 5  0 6  0 7  O X  0 9  1.0 

Yl‘o 
FIGURE 10. Comparison of theoretical (-) with measured (0) distribution of the turbulent 
stress uv in pipe flow. RD = 1.7 x lo5 is Reynolds number based on diameter of pipe. r,,, 
radius of pipe. 

- 

5. Evaluation of the experimental technique in pipe flow 
Since most measurements reported in this article were obtained by techniques 

not previously used, it is worthwhile to evaluate the consistency and reliability 
of the data. First, a series of measurements was made in a fully developed pipe 
flow. Second, the no-rotation boundary-layer data were tested against classical 
two-dimensional results. Finally, consistency between mean flow and turbulence 
measurements was analysed. The fully developed pipe flow experiment is dis- 
cussed here. 

The apparatus consisted of two 18ft long, 6in. I.D. aluminium pipes. The air 
entered through a nozzle-diffuser combination, and was expelled a t  the other end 
by an axial flow fan driven by a variable speed d.c. motor. The axial pressure 
gradient was found to be linear over a distance of approximately 18-20 diameters 
upstream of the working section. From the theory of fully developed pipe flow, 
the friction velocity u, is given by 

and the Reynolds stress, except very close to the wall, is 
- 
uv = u3r/ro. (12b) 

ro is the radius of the pipe and P is the static pressure. 
In  figure 10, our measurements for &and u$ from (12a) are compared with 

(12b). The agreement is very good, better than 2 or 3%. As for the energy com- 
ponents, our data were compared with those of several investigators. The results 
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FIGURE 11. Distribution of (u")* in pipe flow. Ro based on diameter of pipe. r,, radius of 
pipe. 

Laufer (1953) Sandborn (1955) Patel (1963, 1968) Authors 
* & - 7 A  

R,X 10-5 0.6 5.0 1.0 2.0 2-74 1.93 1.7 1-7 
Data 0 o v  A 0  0 . .  

for 2 are illustrated in figure 11. It is shown that our measured values fall well 
within the scatter between the different sets of data,, and similar agreement was 
also found for 2 and 2. Finally, the stress components and u;, theoretically 
zero, were measured to be less than 5 % of the local 2, and were more or less 
randomly distributed. 

Therefore, these results suggest that, under similar conditions, our anemo- 
meter technique permits the determination of the uiuj's to an accuracy better 
than 5 yo of the local turbulent energy per unit mass. In  $ 7  this statement is 
reviewed and slightly modified, on account of the special geometry of the 
present experiment. 

- 

6. Two-dimensional axisymmetric turbulent boundary layer 
Before entering the subject of three-dimensional flow, it is important to verify 

how the unskewed layer (cylinder at rest) compares with classical two-dimensional 
results. 

A first well-known property of two-dimensional layers is the law of the wall. 
Asdemonstrated by Richmond (1957), this must be slightly corrected to account 
for transverse curvature effects. Thus, for axisymmetric two-dimensional turbu- 
lent boundary layers, 

UIU7 = f +(u7 YI4 I (13) 

where g = ?,4 + ya/2r,, (14) 
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FIGURE 12. Law of tho wall for unskewed (no rotation) boundary layer. R = 7.95 x lo4, 
R = 0.0. Stations; 0, 8; 0 ,  6;  V , 4 ;  0, I.---, u/u, = 5 ~ 6 l 0 g l 0 ~ ~ , / ~ + 4 * 9 .  

and zc, is the friction velocity.f+ is the universal function usually associated with 
flat-plate boundary layers, and i t  is asymptotically logarithmic outside the sub- 
layer region. The data for one Reynolds number case are plotted in figure 12. 
Agreement with the logarithmic portion of the law of the wall (in the proposed 
axisymmetric form) is very well shown. However, we note that the me:isured 
velocities are too low as y -+ 0. This behaviour is difficult to understand, since 
errors very near the wall are common enough, but generally tend to be in the 
opposite direction. 

A second property of two-dimensional layers is the velocity-defect law. This 
law is not as universal as the law of the wall, inasmuch as it depends on outer 
boundary conditions, especially pressure gradients. However, Clauser ( 1954) 
showed that there exists a similarity parameter 

which, if held constant, led to similar velocity-defect profiles. 6" is the momentum 
thickness and T~ the wall shear stress. In  the present case, flc E - 0.06; since 
this is small, variations in ,8, should not be significant. In  figure 13 it is shown 
that our data for velocity defect do collapse on one curve. 

An important feature of these inner (law of the wall) and outer (defect law) 
functions is the matching relation, which in this case is semi-logarithmic, pro- 
vided that there exists an overlap region where both laws are valid. We have 
already seen that the outer asymptote of the law of the wall was given by 

(16a) U u, - - = 5*610g,,-~~+4.9. 
u, V 
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FIGERE 13. Velocity-defect law for unskewed (no rotation) boundary layer. R, s2 and 
symbols as in figure 12. --, (U, - U ) / u ,  = - 5610g,, (?J/A) - 1.6. 

Assuming the existence of a defect profile, the inner asymptote must be 

In  figure 13 we find that A = - 1.0. However, according t o  computations of 
Mellor & Gibson (1966), which were in agreement with flat-plate data, the 
equilibrium value of A corresponding to our p, should be - 0.8. Therefore, the A 
obtained in figure 13 is too small. A similar situation is also evident in the work of 
Yu (1958), and may be attributed to the effect of transverse curvature (Richmond 
1957; Probstein & Elliot 1956). Indeed, the axisymmetric mean momentum 
equation contains an additional stress term in comparison with the flat-plate 
equation. This term arises directly because of the curvature and is similar in effect 
to a favourable pressure gradient. InMellor & Gibson (1966) and Herring & Nor- 
bury (1967), it is shown that a favourable pressure gradient means a smaller A ,  
so that the present result is not unexpected. 

In summary, our unskewed layer constitutes a well-behaved flow, and some 
interesting consequences of transverse curvature are confirmed. These observa- 
tions, together with those of 0 2-5, add to our confidence in both the general flow 
field and the experimental method. 

7. The three-dimensional axisymmetric data 
The development of the axial and circumferential velocity profiles is shown in 

figures 14 and 15. To save space, we shall present the complete data for only one 
rotation rate, although three-dimensional measurements were performed in two 
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FIGURE 14. Experimental distribution of axial component of velocity. 
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FIGURE 15. Experimental distribution of transverse component of velocity. 
R = 7.95 x lo4, R = 0.936. 



Turbulent boundary layer with sudde.n straim 
10 I I I I I I I I 

4 -  

16 

BI 

I I I I : Q  Q 

- 

Q 

V 
U 

Ka 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

385 

&I 
I I I I nl kI 

0 0.1 0.2 0.3 0.4 0.5 0.6 0-7 
Y (in.) 

FIGURE 16. Comparison of measured velocity moments, using two methods of interpretation: 
0, direct method (mean flow angle p evaluated a t  centre point of slanted wire); v, corrected 
method, using measured profile of p (coefficients in (10) are integrated over wire length to 
account for mean flow skewness). 

cases, as shown in table 1. The rotation rate is defined as the ratio W,/U,, where 
W, is the surface velocity of the cylinder, and U, the mainstream velocity 
averaged over all x stations. However, in the following discussions we shall 
frequently cite partial data from both sets. 

Although the pipe flow measurements were gratitying, it became evident 
that there were errors in when the technique was applied to the 
rotating cylinder experiment. Errors were introduced because of the small scale 
size and the large degree of skewness in the mean flow near the cylinder surface. 
Since the sensor makes a 45' angle with the wall, this causes the angle ,8, and 
hence the angle of attack $, t o  vary considerably over the wire length. A rapid 
inspection of (8)-( 10) shows that under these circumstances the interpretation 
of the record 2 in the case of the slanted-wire probe becomes rather unreliable. 
Moreover, it was noticed that prong interference effects were more evident in that 
region: this was indicated by the measured constant k of (l l) ,  which was found 
to  be smaller in those cases; k2 was even negative in some instances. A correction 

and 
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was introduced by integrating the coefficients of (10) over the length of the 
wire, using the measured distribution of p (Bissonnette 1970). 

A typical comparison between corrected values and those obtained simply 
by evaluating p a t  the centre point of the wire is presented in figure 16. It is 
shown that relatively large differences, especially in &, are found near the wall. 
The differences i n 2  are much less significant. 

The data presented in this paper were obtained by the corrected method ofin- 
terpretation, but owing to the size of the corrections, there remain some questions 
concerning the accuracy of G a n d G i n  the near wall region, which, from informa- 
tion similar to that illustrated in figure 16, was defined empirically in the present 
case as yll, < 2, where 1, is the wire length. As for the other components 2, 
3 and=, the problem does not arise, since they were obtained with a straight- 
wire probe, in which case the sensor is rotated in a plane parallel to the wall. 
It would seem that a smaller wire length should have minimized the gradient 
effects. This was actually tried, but, with the particular probe configuration used 
in this experiment, the prong interference effects obscured any improvement. 
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8. Integration of mean momentum equations 

Although the corrected and % data appear reasonable, the corrections 
near the wall were rather large and further corroboration seemed desirable. 
Luckily, these quantities can be obtained, in principle, from the mean momentum 
equations. This procedure is hazardous in the case of plane flows of finite aspect 
ratio, owing to the ubiquitous presence of secondary flows. However, with the 
present axisymmetric geometry this problem does not seem to be serious. In  this 
regard, we should mention that the assumption of axisymmetry was verified 
experimentally from measurements of mean velocity profiles in different meri- 
dional planes. The agreement was better than 1 yo of the local value. 

Assuming axisymmetry, the boundary-layer approximation to the equations 
of mean motion can be written as 

(16) 

(17) 

a a 
ax - ( r U ) + % ( r P )  = 0, 

2 5 - 2  
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a w  p a  
U - + - - ( r W ) = - -  ax r ar r: : ( r2$))  
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-7,= -vw+v --- 
P 

infigure 17. 

After substitution of the measured U and W into (16)-( 19)) the shear stress 
distributions rz and r2: were computed numerically. The boundary conditions 
were that rs and rz must vanish a t  the edge of the layer. The computation is 
straightforward in principle, but in practice it led to some difficulties, since it 
involved numerical differentiation of measured quantities. Thus a U/ax and a Wpx, 
in particular, are numerically determined by small differences of larger numbers. 
After considerable trial, the simplest method of a best straight-line fit to the data 
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a t  three adjacent stations was selected. Along with the data, the results of this 
analysis are shown in figures 21  and 22. 

As might have been expected, the procedure described above smooths in the 
y direction while introducing fluctuations in the x direction. Nevertheless, the 
overall conclusion is that the hot-wire measurements and the finite wire length 
correction are corroborated, and there is not likely to be an appreciable syste- 
matic error in the measurements. Note, therefore, that the detailed variations in 
the data are likely to be real, except near the wall. However, the data of station 
3, and possibly 4, should be excluded from this endorsement, because the x 
variations of the Reynolds stresses have been neglected in the momentum equa- 
tions. 

In  table 2 we list the values of rzw and r., (obtained by extrapolating the 
data to the wall, using the slopes of the calculated curves as a guide: in this 
process one or two data points near the wall were discarded, if they were deemed 
particularly inconsistent) along with the experimental momentum and displace- 
ment thicknesses. 
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FIGURE 21. Experimental distribution of UV. R, 0, symbols as in figure 17. -, total 
stress computed from integration of momentum equations. 

9. Three-dimensional axisymmetric turbulent boundary layer 
In  the following discussion, emphasis is placed on proposed extensions of 

existing two-dimensional theories. In  particular, we shall examine the validity 
of a scalar eddy viscosity model, and a t  the same time, investigate some aspects 
of Johnston’s briangular model. We begin our analysis by plotting hodograph 
diagrams in figures 23 and 24. A t  every x station, the velocity vectors for each 
value of the co-ordinate y normal to the wall were drawn on a, plane parallel to the 
wall, from a single origin. This technique was proposed by Johnston (1960). In 
the present case, we plot U against r W/rw.  The relevance of the geometric factor 
r / rw will appear later, when we consider the defect layer. 

These experimental curves suggest that wedivide our analysis into two regions: 
one region near the wall, where the data can be approximated by a straight line 
passing through the origin, which in this experiment is U = 0 and W = -%, 
and an outer region which, after a transistory regime, evolves to apointwhere the 
data can be approximated by a line segment passing through the mainstream 
values U = U, and W = 0. 
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The behaviour of the data in the inner layer can be predictedfrom the equations 
of mean motion. In the wall region, a justified approximation consists of neglect- 
ing the acceleration terms. Hence, the mean momentum equations (17) and (18) 
become 

( 2 1 4  

“-.w + v ( - 4 ]  aw w =,.,,(.). i 

In  the limit y -+ 0, the viscous contribution to  the stresses is dominant, thus 
(21 a, b )  can be written as 

or, defining tanow = T*w/Txw, 

W0+ W - U tanO,(x) (y --f 0). (23) 
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However, the requirement of negligible turbulent stresses, which was introduced 
to permit passage from ( 2 1  a, b )  to ( 2 2 ) ,  cannot be justified at  the relatively large 
values of y for which ( 2 2 )  and ( 2 3 )  are still confirmed experimentally. 

It is sufficient, in order to recover this experimental result, to make the hypo- 
thesis of a scalar turbulent or eddy viscosity, i.e. 

-uv - = v,- au -vw - = I+--;->. aw w 
ar 

Using ( 2 4 a , b )  in ( 2 l a , b ) ,  it  follows that ( 2 2 )  and ( 2 3 )  are also valid at  the larger 
values of y observed in figures 23 and 24.  Although ( 2 4 a , b )  do not constitute 
necessary conditions, the above analysis indicates that a scalar effective eddy 
viscosity is a plausible model in the law of the wall region. 

We next turn our attention to the observed asymptotic behaviour of the polar 
diagrams in the outer region of the boundary layer. We shall show that this 
constitutes a solution of the equations of mean motion asymptotically valid at  
small velocity defects. To simplify matters, we first introduce the approximationt 

Multiplying ( 17) by sin 8 and ( 18) by - r cos 8/rw, where 6 is assumed an arbi- 
trary function of x, and adding, we obtain 

+ V ~ ( U s i n 0 - - W c o s 6  r . 
ar r w  

Adcling and subtracting U sin 8dU,/dx and u(q- U )  (l/cos6) d8/dx and 
rearranging, the above equation can be rewritten as 

"I -Usin@- ax 

U, d8 
(U, - -U)+--  

rw tan0 ax 

r, P 

t More precisely, integrating (19), we should have P = P, - (p  Wa/r) dy. Ilowever, using 

the measured profiles of W ,  it was found that (p Wz/r)  dy < 0-05 &pU,". Furthermore, since 

W is maximum at the wall and decreases very rapidIy, the significant contributions to  the 

JV" 

l 
(pWa/r) dy come from the inner region, whereas we are interested here in the outer 

layer. 
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If we consider the asymptotic case of small velocity defects, i.e. (U,- U)/Ue < I ,  
we can neglect the term involving (V, - U ) z  in (26 ) .  Then a possible solution is 

r W  
rw tan8 

(Ue- U ) + -  - = 0, 

where the right-hand side of (27c)  is obtained by evaluating the constant o 
integration at  the edge of the layer. 6 was originally assumed an arbitrary 
function of x, but (27b)  now provides an equation for its determination. 

From the hodograph diagrams, figures 23 and 24, we see that, after the tran- 
sitory regime, the observed asymptotic behaviour of the polar velocity profiles 
in the outer layer verifies solution (27u)  provided that 0 = 6,. The correlation 
between data and ( 2 7 a )  appears to hold for (U,- U)/U, 5 0.2 as was assumed in 
the derivation of (27a-c). The next data comparison concerns (27b) ,  whose 
solutions can be written as 

tan6,/Ue = constant. (28 )  

Although variations with respect to x of both 6, and Ue are small, the data indicate 
that the ratio (28 )  is indeed a constant. Finally, we write (27c )  as 

In  figure 25, it is shown that the data for are in excellent agreement 
with (29 )  in the range where (27a) applies. Data from both rotation rates are 
plotted in figure 25, and it is recalled that 6, is very different in both instances. 

From the above discussion on the three-dimensional turbulent boundary layer, 
it is possible to draw some conclusions on the hypothesis of scalar eddy viscosity, 
The coefficients of effective eddy viscosity ve (where v, = v, + v but v/v, < 1) are 
defined according to 

and 

In  figure 26, the ratio ve,/ve,, evaluated from the data, is plotted for all x stations 
and for the two rotation rates. The scatter is obviously large, owing to the 
combined errors in uv, vw, and the numerically computed derivatives. Because 
of that, we were not able to evidence any trend with respect to x or y, which is 
why all the points were collected on a single graph. The mean value of the ratio 
is 0.7 with a standard deviation of the order of 20 yo. All the points presented in 
figure 26 lie outside the inner region (as defined from the polar diagrams), but 
many of them exceed the domain of validity of ( 2 7 a )  and (29 ) .  Therefore, strictly 
speaking, the eddy viscosity is not a scalar property of the turbulent field, a t  
least in the outer region of the present boundary layer. (However, in theories 

- -  
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Symbol Station R x 10-4 n 

A 7 4.14 1.8 
0 6 4.14 1-8 
0 8 7.95 0.936 
c7 7 7.95 0.936 

0 8 4-14 1.8 

FIGURE 26. Ratio of experimentally moasured coefficients of eddy viscosity. 8, is thickness of 
circumferential layer. 

R x 10-4 n 
0 7.95 0.936 
0 4-14 1.8 
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using an eddy viscosity, a value of ve,Jve, -N 0.7 is not terribly far from 1, particu- 
larly when it is unity nearer the wall; useful predictions could probably be made 
by assuming it unity everywhere.) From (27a ,  c) and (30a, b )  we obtain 

where experimentally the quantity (W/r)/(a W p r )  is near - 0.1, so that it gener- 
ally appears to be in agreement with data of figure 26. For a planar geometry 
(i.e. rw + m), the condition for a scalar effective eddy viscosity is apparently 
obtained. 

10. Prediction of the wall curvature effect in the law of the wall region 
To complete our analysis of the near wall region, we can attempt to predict 

the radial distributions of the mean velocity components. Equation (23) suggests 
that the mean rate of strain vector has a constant direction Ow, independent of y, 
near the wall. Furthermore, from the definition of Ow, it is seen that this direction 
is the same as the wall shear stress vector. We therefore have the following situa- 
tioninthe inner region: a layer of constant directionof mean rate of strain depend- 
ing only on friction parameters rxw and 7%. These constitute the well-known 
conditions for the existence of the law of the wall. In  partioular, it is not neces- 
sary to specify the nature of the outer layer, which in the present case is three- 
dimensional. Hence, in principle our data should satisfy this classical model. 

As suggested by Clauser, the data may be plotted as &I&, against Qe?j/v, 
where = ( U z +  (W, + W)2)6 and &,is the free-stream value. In  these co-ordinates 
the law of the wall is a family of curves parametric in C,. (The variable was 
used instead of y because this was shown to be the proper choice in the limit 
of no rotation. However, differences between 5 and y are rather small at  these 
heights.) Although the data on figures 27 and 28 indicate a fairly well-defined 
semi-logarithmic region, it is impossible to find a skin-friction coefficient that 
would allow a reasonable fit with a law of the wall curve. 

Wall curvature is very likely the factor responsible for this phenomenon. In  
an attempt to understand the wall curvature effect more fully, we shall consider 
the equations for the turbulent stresses. Since these equations are not closed, 
assumptions are required. In  $10 we shall investigate the simplest possible 
assumptions, in an attempt to predict the aforementioned wall curvature effect. 

The equations for the turbulent velocity moments are written, in generalized 
orthogonal co-ordinates, as 
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where 7: = , ~ g M ( q , ~ + u ~ , ~ )  and gkl is the metric tensor. The object of the closure 
approximation consists of writing (31) in terms of ui uj only. This is done by model- 
ling the different transport terms which involve higher-order moments or cor- 
relations of instantaneous velocity gradients. A general framework for this theory 
was first proposed by Prandtl (1926) and further developed by Rotta (1951). 
It was later applied t o  various degrees of generality by Glushko (1965), Beckwith 
& Bushnell(1968), Mellor & Herring (1968), and Donaldson & Rosenbaum (1968); 
the particular form used here, the mean turbulent field (MTF) closure, is taken 
from a survey by Mellor & Herring (1973); the reader is referred to the survey 
for a full discussion. 

The pressure-velocity gradient correlations in (3  1) redistribute energy among 
the three components and, on summation over the indices, they vanish identically. 
They have been called the energy redistribution terms by Rotta, who suggested 
that 

- 

The model for the dissipation term is based on the fact that the term is related to 
small scale turbulence which according to the Kolmogorov hypothesis is isotropic. 
The dissipation explicitly involves the viscosity and may be defined by $vq2/h2, 
where h is the Taylor microscale. However, as is well-known (Batchelor 1956), 
the dissipation is independent of viscosity (away from walls) for sufficiently large 
Reynolds numbers. In  spectral wavenumber space. the dissipation cascade 
process is determined by small wavenumber inertial processes; the viscosity 
merely determines the large wavenumber cut-off. We therefore let 

It should also be noted that q3/R may be directly related to the inner asymptote 
(r + 0) of the outer function for the triple velocity correlation derivative in r 
space 5s described by the large Reynolds number asymptotic analysis of Mellor 
(1972) (whereas q2/h2 is related to the second derivative of the inner function for 
the double velocity correlation as r -+ 0). The parameters I, and A are of course 
empirical length scales. We shall not need to model the diffusion rate; we shall 
simply represent it by the symbol gii. 

If wo invoke the boundary-layer approximation, we obtain for axisymmetric 
flow 

D- .-au i q  - 2 q3 
Dt ar 3 I ,  
- u2 + 5Bll = - 2uv- - - - (u2- *q2) - 3  R, 

D -  --w l q -  2 q3 Bv2 + 5B22 = 4vw - - - - (v2- iq2) - 3 x, 
r 3 I ,  



400 L. R. Bissonnette and G. L. Mellor 

D- -w -au i p -  -uv+$2,2 = 2uw--v2---- 
Dt r ar 3 lluv, 

Dt 
-vw+g2,  D- = 

(34.f) 
D- --w -(aa; --au I q -  
-uw+91, = -2uv--uv --- -vw----uw. 
Dt r ar 3 I ,  

Since we mean to analyse only the law of the wall outside the viscous sublayer 
and far enough from the separation line between unskewed and skewed flow, it 
is possible to neglect diffusion (Laufer 1953) and advection in these equations. 
Similarly, we can write the approximate mean momentum equations in a form 
valid in the near-wall region: 

r -  1 r2 - 1 
--uv = -7 (x), --vw = - -TZw(X) .  

rzo P %a ?% P 
With the left-hand-side terms neglected and W/r = 0, (34a-f) can easily be 

solved to obtain the classical mixing length or scalar eddy viscosity formulae. 
However, for w/r $. 0, the algebra becomes extraordinarily oomplicated (yet the 
equations are undoubtedly a simplified description of real turbulence). An ex- 
pansion in the parameter sE;(!g)-l (36) 

is certainly possible, but we find that in our case the value e N - 0-1 is still not 
sufficiently small t o  permit truncation to O ( E ) .  We must, therefore, present full 
solutions. They are written so that the reader may easily obtain simple asymp- 
totic expressions as e 4 0. 

31, 8W It is Gonvenient to define 
#=--. 

4 ar 

Using (34b, c , f ) ,  ( 3 4 4  and (34e) may be written as 

where 

(37) 

so that fJ0, q5),f2(0, q5) = 1. If we define tan8 = (aW/ar)/(aU/ar) and use (35a, b)  
and (38a, b )  we obtain 

where, in general, B = B(x, r ) .  Although not obvious, a two-term expansion 
f i / f 2  N i + e + (12g52 + 1)  €2 agrees quite well with the full expression in the range 
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of experimental interest; in fact, f,lfiis quite close to unity. Since 1 < r/r, 6 1-03, 
wehavetan0 2 72,/7zw = tanB,(x). 

A useful expression relating 3 and q2 is obtained from (34b) using (38b), 

where a 5 A/911- Q is a repeatedly useful identity. Furthermore, summing 
(34u-c) and using (37), (38a, b) and (41), we obtain 

fl cos2 0 + (1 - e)f2 sin2 
1 4€$”fi 
- 

An expression for the total stress 7/p = {( - u . v ) ~  + ( - G)2) may now be obtained 
from (38u, b), (41) and (42). Thus, 

T ,(31 )3 a& 2 1 
- = ~CTL ( ) [ ( j 2  )3(Lcos2B + (1  - E )  sin2 0) ($cos2 0 + sin2 6)) ’. 
P A G 1+4€$2f, f 2  

(43) 
It should be noted that in (41)-(43) the expressions in square brackets are the 
curvature correction factors, which approach unity as c + 0. 

It is now our plan to integrate (43) numerically for the region close to the wall 
but outside the viscous region where 7 = 7w. First, however, A and I ,  must be 
specified. Since the proposed closure model is meant to be universal, we let 
E --f 0 and use two-dimensional data to determine the relevant constants. We 
assume the usual ‘ mixing length ’ scaling such that 

I, = Ay, A = By, (44% b )  

where A and B are constants. It is easy t o  show that (44a, b) lead to the classical 
logarithmic result when E = 0. Our principal assumption here is that (44a, b) are 
universal in the sense of being independent of curvature effects. Therefore, from 
(43) we deduce that 

a t 1  (38 l3 = 
A 

where K is the von KhrnAn’s constant, equal to 0.41. Similarly, a can be ob- 
tained from two-dimensional results, since, for e = 0, (41) may be written as 

- 3a1, cx 
v21? = n = - 3a -k 2‘  

From a survey of classical two-dimensional data, we find that $/q2 is approxi- 
mately constant in the law of the wall region and lies somewhere around 0.15t. 

t According to the asymptotic analyses of Yajnik (1970) and Mellor (1972), the outer 
asymptotes of the inner functions describing the turbulent stress approach constants 
(while the mean velocity approaches the familiar semi-logarithmic asymptote). From 
Laufer’s (1953) data we find that vyq2 = 0*10,0.16 when yuJv = 28,280, whereas, from the 
smaller Reynolds number data of Klebanoff (1955), we obtain G/q = 0.10, 0-17 when 
yuJv  = 25, 85. However, data are represented by composite, inner and outer functions and 
the larger quoted values of yuJv are where we estimate that the outer (defect) function 
begins to dominate. 

26 FLM 63 
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Using this number, we have a = 0-55. Finally, as an expedient (and asit  will turn 
out, an incorrect) measure, we evaluate the constant of integration by assuming 
it equal to the classical value at  8 = 0. On Clauser-type plots we thus obtain a 
family of solutions for the mean velocity, valid in the near wall region outside 
the viscous sublayer. Sample cases are illustrated in figures 27 and 28 for different 
choices of the skin-friction coefficient C,; the parameter 6,  was evaluated from 
the hodograph diagrams. This permits a comparison of the data and the cor- 
responding two-dimensional solutions. 

It is seen that the corrections are in the proper direction. The slopes of the 
lines of constant C, are significantly smaller than their two-dimensional counter- 
parts and agree better with the general behaviour of the experimentalpoints. How- 
ever, using these solutions to  evaluate C,, it is found that the numbers obtained 
in this manner are consistently 20-25 yo larger than those reported in table 2. 
A plausible explanation for this difficulty resides in our choice of the inner bound- 
ary condition for the integration of (43), where we assumed that the viscous 
sublayer was not altered by the curvature effect. If indeed the constants of in- 
tegration were to be changed to reach agreement with the C, presented in table 2, 
we can see in figures 27 and 28 that the solutions of (43) would reproduce even 
better the experimental results, since a small Cf corresponds to greater re- 
duction in the slope. 

In  summary, these approximate solutions, as obtained here, cannot be given 
full quantitative significance because there is a lack of definite information con- 
cerning the viscous sublayer, or equivalently the inner boundary condition. How- 
ever, qualitatively, they constitute a fair prediction of the observed phenomenon 
(i.e. a non-negligible reduction, in comparison with two-dimensional flows, of the 
slope of the mean velocityprofiles). It can be easily seen by following thederivation 
of (43) that the corrections are primarily a consequence of additional turbulent 
energy production proportional to WIT, hence the expression ' curvature effects.' 

A significant point concerning these solutions is that, except for the usual 
approximation of neglecting advection and diffusion in the MTF turbulent 
transport equations, they were obtained from the full MTF equations with no 
empiricism save that required in plane, two-dimensional flow. For this experi- 
ment, similar results could probably have been obtained by modelling directly 
the destabilizing effects of the centrifugal forces. Such an analysis is reported in 
Cham & Head (1970), where the increase in mixing length is expressed as a, 
linear function of an analogous Richardson number defined as the ratio of the 
square of the Brunt-Vaisdii frequency to the square of the turbulence frequency. 
However, we believe that the approach of the present paper is more general, 
inasmuch as the necessary empirical constants are evaluated independently of a 
particular geometry. Thus, the physics of the centrifugal instability is built-in 
in the MTF model and no further assumptions are required. 

Based on these observations, we conclude that the MTF closure appears to 
represent properly the physics of the interaction between turbulent energy 
budget and mean velocity field. Hence, it is expected that the method will work 
well in problems involving different processes for production of additional turbu- 
lent energy. 
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11. Dynamics of turbulence 
Prediction of mean velocity field, as was discussed in 5 10, is not necessarily 

a guarantee that the modelling of each dynamical process is physically correct. 
This constitutes the real difficulty or danger connected with the construction 
of any closure theory. The problem is best seen by examination of (38a, b) ,  
which closely resemble the classical mixing length relation, owing to our neglect 
of advection or ‘history’. It is quite probable that simple closure hypotheses 
of this type would lead to accurate enougb solutions, even in this rapidly de- 
veloping flow. In fact, the constitutive hypotheses could conceivably be wrong 
and the model still work well so long as the above condition on rapid response 
or negligible ‘history’ is satisfied. It is thus important to seek further experi- 
mental information, to check whether the individual modellings do approximate 
the corresponding physical processes. 

This is a very difficult task, because measurement of all the terms involved 
in the turbulent transport equations is either too complex or simply beyond 
existing experimental techniques. Except for advection and production, it is 
impossible, in most practical cases, to discuss separately and exactly the various 
other rates of the energy processes : turbulent and viscous diffusion, redistribution 
and dissipation. Most often one must satisfy oneself with qualitative or approxi- 
mate representations based on the knowledge of the end effect, i.e. the spatial 
gradients of the turbulent stress components. For example, many turbulent 
shear flows are termed equilibrium flows from the observation that the turbulent 
energy level varies slowly along the streamlines with only a gentle gradient 
transversely. Hence, it is argued that advection and diffusion are negligibly 
small, whereas locally the dissipation rate balances the production rate almost 
exactly. In  the present experiment, we have a situation where this equilibrium 
is suddenly upset by a near step increase in the straining rate. Studying the 
turbulent stress components as the fluid particles move across this rapid per- 
turbation, it is hoped that additional information might be gained concerning 
the rates of redistribution, diffusion and dissipation. 

The situation is illustrated in figures 29 and 30, where the projections on a 
meridional plane of estimated streamline surfaces are drawn, along with various 
boundary-layer thicknesses. Curve (iii) represents the thickness of the transverse 
layer (velocity component W ) ,  and thus constitutes a boundary between a region 
of unskewed and a region of skewed flow. From data evaluation, it is found that 
the change in the awl& rate of strain is very rapid: the total rise takes place 
within a boundary-layer thickness. Hence, as it travels along streamlines, the 
turbulent fluid experiences a steep increase in energy input. There follows a 
readjustment whose nature and speed are indicative of the various rates of the 
energy processes. 

Dynamics of energy redistribution 

The energy data u2, v2, w2 and q2 are plotted against x for three different values of 
the normal co-ordinate y (figures 31 and 32). As is shown in figures 29 and 30, 
lines of constant y nearly approximate the streamlines. Thus, the experimental 

- - -  

26-2 



404 

I I  I I I I I  I 

L. R. Bissonnette und (2. L. Mellor 

c 
h 

.z 0 8 -  
31 

0 6  

0 4  

0 2  

u 

/- 

/ =  >-== 

//--- - -- -/< 
Ols,-//- -=--- 

Streamlines - 
/-- - 
I 

, 
/ - / , , 

,/ - 
1 1  L/’I I I 1 1 1  I I I l l  

I 6 

1.4 

1.2 

1.0 

? 
3 0.8 
v 

a 
0.6 

0.4 

0.2 

0 .  

x (in.) 

FIGURE 29. Qualitative pictures of the flow field for L2 = 0.936, R = 7.95 x lo4. (i) Overall 
boundary-layer thickness, with rotation; (ii) overall boundary-layer thickness, without 
rotation; (iii) thickness of the transverse layer 8,. 

I I I  I I I I I I I  I l l  I 

- 
- / ,5’ 
- ,b’/ ./ 

( i )  ,-’ ,, 

/4--+-7- 
____- - 

--/ - (ii)/ ,’ 
/--- 

- 
, , “( i i i )  

__--- 
Streamlines , , 

/ 
/ - / - / 

/ 
/ ___- 

/ - , 
/ 

/ 
1 I I,’ I I I I I  I I I I I I 



Turbulent boundary layer with sudden strain 

3 

7 -  - 

I -  

0 -  

405 

I 

I “ I  I I I 

-30 -20 -10 0 10 20 30 
I I I I I I I 

31 
- 30 

I I I I 
-70 -10 0 10 20 30 

I -  

0 -  I 

-l - 
d I 

FIGURE 3 1. Distribution of turbulent energy components along streamlines defined by 
lines of constant y for Q = 0.936, R = 7.95 x lo4, 0, q2/qt; 0, u2/q:; V, va/qi; a, w”/qi. 
y: (a) 0-5, ( b )  0.3, ( c )  Oalin. 

- 

curves drawn in figures 31 and 32 represent very closely the evolution of the 
turbulent energy components along streamlines. To exemplify the relative 
growth in each case, the data are normalized by the value of the turbulent 
energy at  station 1,421. The abscissa is (x - xR)/8, where X, is defined as the inter- 
section of the line y = constant with ourve (jii) of figure 29 or 30. Hence, 
x = x, is the location where the approximate step input is applied. 8 is the overall 
bounda,ry-layer thickness averaged over the total available length. 

The first terms on the right sides of (34a-f) are the production rates of turbu- 
lent energy, and constitute the inputs in the equations for the components of the 
Reynolds stress tensor. It is recalled that, except for the boundary-layer approxi- 
mation, these terms are exact. While all the rates of strain in these expressions 
undergo a rapid change, numerical evaluation from the data shows that by far 
the largest and steepest change occurs in a Wlar. Therefore, the sudden increase 
in energy production is initially concentrated in the energy component 2 ; data 
indicate that it is approximately an order of magnitude smaller for 2 and 3. 
However, inspection of figures 31 and 32 shows that the three energy components 
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start increasing at the same point, although as expected the rise in 3 is faster. 
Hence, there must be an energy supply in 2 and 3 other than direct production. 
The most probable mechanism for this is the redistribution of energy among 
the components through the energy redistribution terms (the pressure-velocity 
gradient correlations). Not only is the process responsible for e.g. direct input in 2 
but, by also contributing to &, it indirectly increases the 2 production. Within 
the limits of the present experiment, the results on figures 31 and 32 exhibit no 
measurable lag between the growth of the individual energy components. In  
other words, the readjustment of the relative magnitudes of the three turbulent 
energy components is completed very quickly. Therefore, on the basis of these 
measurements, it is concluded that the process of energy redistribution responds 
very rapidly to an applied straining motion. 

Dynamics of energy production, advection and dissipation 

The processes of energy production, advection and dissipation evidently con- 
stitute another very important dynamical aspect of (31). Since the redistribution 
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terms vanish exactIy in the equation for the total turbulent kinetic energy, it is 
convenient to study the development of q2 alone, which is governed by the 
balance between production, advection, diffusion and dissipation. It is the 
purpose of the following analysis to extract from our measurements as much 
information as possible concerning these individual rates. 

The available data are sufficient to compute directly the turbulent energy 
production rate. Performing this calculation along a streamline, it  is found that, 
in a large portion of the flow field far enough from the wall, the production rate 
rises sharply, within a boundary-layer thickness, to a much higher level and 
remains reasonably constant thereafter. Hence, to simplify the discussion, 
we postulate a streamwise step function for the turbulent energy input. Similarly 
the q 2  advection rate may be easily calculated from the slope of the q 2  curves 
in figures 31 and 32. Qualitatively, it  is observed that the advection rate is 
initially very small, that it increases abruptly to a maximum at the onset of the 
distortion, that it starts decreasing almost immediately after, and that it con- 
tinues to decrease over a measurable distance before it becomes negligible again. 
(In the case of the largest mainstream velocity, figure 31, the available length is 
not long enough clearly to evidence this asymptotic behaviour.) 

From these observations concerning the rates of production and advection, 
it may be argued that the turbulent processes of diffusion and dissipation react 
promptly but smoothly to the step-like production increase before dissipation 
can finally reach a value closely in balance with production. In  the conditions 
of the present experiment, this ‘history’ manifests itself over a distance of the 
order of 20 boundary-layer thicknesses in the lower velocity case, whereas the 
corresponding length is greater than 308 in the high velocity case. 

To arrive at  a somewhat more quantitative description, it is necessary t o  
introduce hypotheses. We choose here the framework of the MTF closure model 
described earlier; it is hoped that this approach will help us understand the 
important processes governing the observed data. By definition, 

- - 4” = UiUi = gijuiuj. 

Thus, upon multiplying (31) by gi i ,  one obtains 

- 2- 

P 
a 
- q 2 + ( U k q z ) , k  = - - 2ukull&--rfufk. (46) 
at 

Note again that the redistribution terms are identically zero in (46). 
We introduce here an important simplification: we postulate that diffusion 

is negligible. Although these terms are generally small in near equilibrium flows, 
there is no guarantee that such is the case in the present situation; however, we 
use it here as a starting point to be reviewed a posteriori. The simplified equation 
(46) may then be written schematically as 

D 
Dt 
-(*q2) = P-D,  (47) 
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represent respectively the production and the dissipation rates. The left-hand 
side is the rate of change of q2 along a streamline, However, in figures 29 and 30 
it is shown that the streamlines are nearly parallel to the wall surface. Hence, 
we ca,n rewrite (47)  as 

where U is the local mean flow velocity, which is approximately constant along 
a streamline. For the dissipation D, we use the MTF model defined in (33), i.e. 

B = q3/A, (49)  

which here may be simply considered as a defining relation for the empirical 
length scale A. A is assumed constant in the outer region of the turbulent 
boundary layer. Finally, as has been established earlier, P may be approxi- 
mated by a step function which fmsses from a level PI to a level PF. If one 
non-dimensionalizes (48) after substituting for D, one obtains for x > xR 

dh/dq+hQ = 1, (50)  

where = (q/YF12J 9 = 2(x-x(l)/A* (51% b )  
y$ is the downstream energy level attained asymptotically as x -f 00, and it is 
defined by q$ = P,A. Equation (50)  is easily solved numerically; a convenient 
boundary condition is h(0) = 0. Finally, x,, may be calculated from 

h(TR) = qI/qB'? (52) 

where rR = 2(x, - xo)/A, and where q: is the energy level measured on the given 
streamline prior to the beginning of the distortion. 

In  figure 33, we compare the data of figures 31 and 32 with the numerical 
solution of (50) in the cases where qF, yT and xo can be unambiguously determined. 
The four different sets of data were brought to coincide with the theoretical 
curve by choosing 

Hence, the trend of the data seems to indicate that Al8isindependent of Reynolds 
number and rotation rate far enough from the wall. This result apparently 
corroborates the assumption made in constructing the dissipation model. How- 
ever the value quoted in (53) is approximately twice the value obtained by 
equating production and dissipation in equilibrium situations. The latter 
calculation is performed by direct substitution in 

A/B = 3.5 F 0.3. (53) 

The value 
(54)  

(55) 
was computed from measurements in the outer boundary layer of the no- 
rotation case, in the flow regions preceding the distortion in both rotation cases, 
and finally in the asymptotic downstream region of the highest rotation rate 
case. 
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That the value of A is larger in the rapid adjustment region than in the up- 
stream and downstream near equilibrium region is understandable, in view 
of the fact that we have approximated the production term as a step function and 
diffusion has been neglected to simplify the analysis. In  the adjusting region, it 
is reasonable to believe that the high turbulent energy gradients observed along 
the relatively thin region between unskewed and skewed fluid give rise to 
significant outward diffusion. Inclusion of this effect would signify replacing the 
step function production term in (48) with a more smoothly increasing 'produc- 
tion minus diffusion' term. By tracing through the above analysis, it may be seen 
qualitatively that this change would result in a smaller value of A relative to the 
value given in (5 3). 

The magnitude of the difference between (53) and (55) suggests that diffusion 
grows to the same order as dissipation during the rapid straining motion, Hence, 
a full solution to the system (34~-f)  including a diffusion model would be re- 
quired to achieve any kind of precision. However, in light of the results illustrated 
in figure 33, it is probable that the basic length scale A which characterizes 
the dissipation process is relatively constant compared with the observed changes 
in p2 and the other flow properties. 

In  summary, we can draw the following qualitative picture of the turbulence 
dynamics. On the one hand, through the action of the redistribution processes, 
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the structure of turbulence seems to adjust itself very rapidly to local changes. 
This partly explains the success of the various eddy viscosity type closure 
theories since the above constitutes a necessary condit.ion for their existence. 
It also indicates why the latter type of behaviour must be dominant in any higher- 
order model. On the other hand, the slower approach toward production- 
dissipation equilibrium implies that turbulence has non-negligible history as far 
as its intensity is concerned. 

12. Conclusions 
It was found that the axially rotated cylinder constitutes a relatively simple 

means of studying three-dimensional boundary layers. A technique was de- 
veloped for complete mean velocity and turbulence measurements in skewed 
flows. The method permits measurements of all six components of the uiuj tensor; 
it requires no prior knowledge of the local mean flow angle, and the angular Cali- 
bration of the sensor is a built-in feature. However, some difficulties were experi- 
enced with the stress data UV and =near the wall surface because of probe size by 
comparison with the scale of the skewed flow in that region. A corrected method 
of interpretation was used to account for this effect. Comparison with the values 
of UV and vcW obtained from the momentum equations corroborates these results, 

The hodograph diagrams of the mean velocity vectors revealed the existence 
of two characteristic regions in the flow fleld. In  the near wall region, it was 
observed for all cases considered in this experiment that the mean rate of strain 
vectors assumed a constant direction equal to that of the wall shear stress vector. 
In  a rotating frame of reference, this means that the mean velocity vectors are 
collateral. Theoretically, this behaviour is easily predictable from the Navier- 
Stokes equations in the limit y + 0. However, to explain the observation that 
this condition exists a t  relatively large values of y, it  was sufficient to postulate 
a scalar effective eddy viscosity. 

As y becomes larger the situation described above ceases to be valid; in a 
rotating frame of reference the mean flow angle begins to vary with distance from 
the wall. However, as the flow develops downstream and the transverse layer 
(velocity component W )  begins to reach the edge of the overall boundary layer, 
the hodograph diagrams showed that the outer region is characterized by a 
constant direction of the vector V = Ui + (W, + r/rw) k. Theoretically, it  was 
demonstrated that this behaviour constitutes an asymptotic solution, valid for 
smaII velocity defects, to the equations of mean motion. This solution includes a 
relation between UV and vW, which was confirmed experimentally. Interestingly, 
the two separate solutions for the mean velocity vector and the stress vector 
can be combined to show that the eddy viscosity is not a scalar in the outer region. 
The above prediction was further corroborated by experimental evaluation of 
the ratio vez/vez, which was found to be 0.7. Although this number is not terribly 
far from unity, it was concluded that, in principle, the effective eddy viscosity 
cannot be considered a scalar property of turbulent fluids. I n  the present case, 
streamline curvature is probably the factor responsible, whereas an eddy vis- 
cosity may very well be realized in plane flow. 

- 
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Although the basic requirements for its existence were realized, the mean flow 
data did not satisfy the universal form of the law of the wall, a fact which is 
attributed to a curvature effect which is responsible for additional turbulent 
energy production. Using a simplified version of the higher-order MTF closure 
(Mellor & Herring 1973), which requires no empiricism over that required for 
plane flow, a fair prediction of this effect was achieved. Because of its generality, 
it is very possible that this approach will contribute to the study of problems 
involving different physical processes of turbulent energy production such as 
stratified flow problems. 

In  the discussion of turbulence response to rapidly changing mean rate of strain, 
i t  was found that the redistribution processes react promptly to realign the 
turbulence structure. Similarly, the dissipation and the diffusion rates increase 
rapidly, to balance the sudden rise in energy production. However, the return 
to production-dissipation equilibrium is slower; advection remains important 
for several boundary-layer thicknesses following the applied straining motion. 
The present experiment constitutes a relevant test of closure theories dealing 
with the turbulent transport equations. In  particular, our findings emphasize 
the special attention that must be given to t,he modelling of the redistribution 
processes. Owiug to their effectiveness in rapidly adjusting the turbulence 
structure to local mean flow conditions, they play a decisive role in the 
turbulent energy budget. 
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